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ABSTRACT

Existence and regularity of nontrivial time periodic

solutions are proved for semilinear wave equations of the

form

u~t~~~
u + f ( x ,u) = 0 0 < x < T r , t e r n

u(x,b) 0 = u(ir,b)

under mild smoothness , monotonicity , and superlinearity

assumption s on f. The forced vibration case where f depends

on b in a time periodic fashion is also treated .
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FRE E VIBRATIONS FOR A SEMILJ N EA R WAVE EQUATiON

Paul H. Rabinowltz

Introduction

This paper is primarily concerned ~~ th the existence and regulari ty of free vibrations for a

one dimensional semilinear wave equation . To be more precise , consider the partial  d i f f e r en t i a l

equation :

(0 .1) ~~ — u + f(x , u ) = 0 , X e  (0,ir), t t  IR

together with the boundary conditions

( 0 .2 )  u(0 ,t) = 0 u( ir ,t) t £ IR.

We are interested in the existence of solutions of (0 . l) - (0 . 2) which are periodic in t . Suppose

f(x , 0)~~ 0 so u 0 is such a solution . Following the terminology used in ordinary d i f f e r e n t i a l

equations , we call a nontrivial time periodic solution of ( 0 . I ) - ( 0 .  2) a free vibration. One of t I t

difficulties in free vibration problems is that the period is not known a priori . Our main  resu l t  is

that  under conditions on f given in §1, for any period which is a rational mul t ip le  of — 
. (0 . 1)-

(0 . 2) possesses a classical free vibration possessing that period.

While our major concern is with free vibrations , the techniques we use for (0 . l ’ ) - ( O . ?.
‘
~

work equally well f or  the f orced vibration case where f depends explici t ly on t in a periodic

fashion as well as on x and u

There has not been much work on periodic solutions of such wave equat ions.  A certain

amount of ef f ort has gone into the stud y of perturbation problems for the forced vibrat ion case where

f is replaced by e ~(x , t , u) In (0 . 1) with r near 0. See e . g .  [1] and the references cited there

Very l it t le has been done for the free vibration case. A few people have given form al  so lu t ions  Lu

( 0 .3)  ~~ - u + ~ g(x , u , u , u
~

) 0

together with  boundary and per lodicity conditions . See (2 1. Xurzwell [3 )_ (4 )  used an averaging

method for a probl em of the form (0. 3) wIth u~ and u terms appearing In a special fashion.

Sponsored by the Uni ted States Army under Contract No. DAAGZ 9-? 5-C-0024 and the Off ice  of N a v a l
Research under  Contric t  N00 0l . 1-76-C-0300 . Reproduction in whole or In part Is permitted for any
purpose of the Un i t ed  Slates Government .
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More recently Fink , Halt, and Hausrath (S] and Stedry and Veivoda [2] have obtained some results

for equations of the form (0. 3) with such g’s as (I - u
~

)u
~
, (I - u2)u

~
, and (I - u2

)u . They ob-

tain weak solutions which are piecewise continuous. Meirose and Pemberton [6) have obtained

continuous weak solution s for an equation like (0 . 3) . There does not seem to have been any

rigorou s work other than our own on (0 . l )- ( 0 . 2) for nonperturbation problems.

Naturally one must  use global methods to treat (0 .1) for f’ s which are not small.  Our

approach to (0 . l) -(0.  2) Is via the calculus of variations . For definiteness suppose we are trying

for a Zn periodic solution of ( O . l ) - ( 0 . 2) and I depends only on u . Let T = [0,”] x [0 , n) a nd

consider

(0 .4) ~ ( u) = f T[~~
(u

~~
_ u 2) - F(u))dxdt

where

F(z) = fZ f(s)ds

Thus the integrand for (0 . 4) Is the Lagranglan for our problem . Formally critical points of • de-

fined on a suitable class of t periodic functions are weak solution s of (0 . l ) - (0 . 2) .  The function j
4’ Is indefinite in the sense that  It Is neither bounded from above or from below on e .g .  w”2 ( T) .

We do not know how to obtain nontrivial critical po ints-of 4. in any d irect fashion . However under

conditions on f given in §1, nontrivial critical points u can be obtained for • restricted to

finite dimensional subspaces En of admissible function s. Difficulties which arise In attempting

to get the functions u to converge to a solution of (0 . l ) - ( O . 2) lead us to study a modified

Lagranglan and a corresponding modified version of (0 . 1). ThIs Is carried out in §1. EstImates

are obtained In §2 which enable us to solve the modified problem . Then the existence of weak

solutions of (0 . l )- ( 0 .  2) is shown In §3 and their regularity is studied in §4.

For all of the above we assume f = 1(u) and we seek a Zn periodic solution in t of (0 . 1)-

(0 .2). Various extensions of our main results  are carried our in 55. In particular we show there are

free vibrations of (0. 1)-(0 . 2) for any period which Is a rational multiple of n . The effect of

weakening the hypotheses made on f in ~l Is also studied. Finally the forced vibration case is

treated . Some topological results required In §1 are proved in the Append ix.

-2- 
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The variational method used in 51 to obtain approximate solutions Is fairly general and

may be usefu l In other situations involving variational problems with indefinite Integrands .

A natura l further question to pursue Is whether results analogous to ours can be obtained

for free vibrations of quaslllnear wave equations such as

(0 . 5) ~~ - ( o ( u )) + 1(u) = 0

together with (0 . 2). Quite recently R. Di Perna has proved that In striking contrast to (0 . 1), if

I - f E 0 and o satisfies some reasonable conditions , then (0 . 5), (0 . 2) possesses no nontr ivia l  f ree

vibrations.

A second interest ing question to ask and for which we have no answers Is whether  (0 . 1)-

(0 . 2) possesses free vibrations with periods which are irrational multiples of n

Finally we are Indebted to E . Fadell for his assistance with the topological r e su l t .

Lemma A. 2 , given in the Appendix . We also thank  L. Nirenberg for some ideas which led to the

proof of the regular i ty  result , Theorem 4 . 1, and to H . Brezis for some suggestions w~ -h led to

Theorem 5. 6 .

I
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~1. The modified problem and its approximate solution

Some notation is In order . Let T = {(x , t ) I x e  [0 ,w) ,  t e [0 , 2w ) )  and consider the set of

C°° function s on T , Zn periodic in t and vanishing near x = 0 and x = n~ Let H denote

the closure of this set with respect to II u i  D°~u where L2 L2(T) H0 ,m k1~ m L
denotes a derivative of order lol and the usual mul t i - index  notation Is being employed . Let

H denote the closure of C
m 

functions on T, Zn periodic in t , with respect to 
H

Let C”(T) denote the set of m t imes continuously differentiable functions on T , 2

periodic in t , and satisfying the boundary conditions (0. 2) .  The usual maximum norm is used
mfor C

We begin our Investigation of (0 . l ) - ( 0 . 2) with the problem

u
~~~- u  + f ( u ) = 0 , 0 < x < w , t c l R

(1.1) xx

L~ u( O ,t) = 0 = u( TT , t ) ,  u(x , t + Zn ) = u(x , t)

which is technically sl ightly simpler than (0 . 1). It Is assumed that f satisfies

(f
1
) I e c~iR,m~ and f(0)  = 0

f Is strictly monotonically increasing, I . e . ,  z1 > z 2 implies

1(z 1) > f(z 2
)

(f 3
) f is superl inear  at 0 and m ~ i. e.

(I) 1(z) = o ( i z I )  at z = 0 and

(ii)  There are constants  ~ > 0  and 0 € [0 , -i )  such th at

F(z)  fZ  f(s)ds  < 0  z f(z) for jz~ >~~

Remark 1. 2: By z 1(z) > 0  for z ~ 0 and by ( f 3) ( I I ) ,  if ~~ >

1( . 3) Oz — F ( z )

Integration and exponentiatlon of (1 . 3) then shows I z I ° < a F( s) for I z i  > z where a > 0 .

Hence by (f 3) ( i i ) ,  
1

— 

(1.4) $ z ) ° < a O  l f ( z ) l  for ~~ >~~

which Jus t i f ies  the term super ilnear In ( f 3)(ii) .

-4-
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2 2
Let 0 = -

~~--~~ - . An important role in the study of (1.1) is played by N(~~ , the nul lat ax 
2space of 0 . It Is easy to see that the closure in L of N( E~ is

(1 .5) N {p (x+t) - p( — x + t ) I P C  L2(~~
1) )

where sk
~~ denotes the unit  sphere In mk . Let N1 denote the orthogonal complement of N in

L2
. If u Is a classical solution of (1.1), then u = v + w, v c N , W~~ N1. We can now state

our main result :

Theorem 1. 6: Let f satisfy (f
1

)- ( f
3) and f ck , k > 2 . Then there i s a  u = v+w e (C k fl N )  ~i

(C k
~~ fl N1) such that u is a nontrivial solution of (1 . 1) .

The proof of Theorem 1. 6 will be carried out in §1-4 . It is a consequence of an existence

result proved in §1-3 and a regular ity theorem given In §4 .

The fact that  there is no upper bound on the growth of f as IzI~
.oo creates some difficulty

for us later which we bypass by Introducing a C1 truncation of f defined by

(
“i(z) 

, l Z I ( K
(1 .7) f~~z)= ~ f (K ) + f ’(K) (z -~~ + ~ K ) ( z -~~

3 
, z > K

+ f ’( -K) (z+K) + p (K) (z+ K ) 3
, z < - K

where p (K )  will  be chosen appropriately later.  That f
K

(z )  grows like z 3 at m is not crucial

but there is a cut-off power beyond which our arguments fail .

We will solve (1 .1) with the aid of a modified problem which can now be introduced . Let

~~, K > 0 .  The modified equation for U = v+w € N 1 then is: 
V

(1 .8) D u _
~~~

vtt + f K
( u ) = 0 , 0~ z x < n , t € I R

u(0,t) = 0 = u( Tr , t) u (x , t + Zn )  = u(x , t)  .

Our goal is to solve (1 . 8) for any )3, K > 0 and then obtain a solution of (1 . 1) by choosing K

appropriately large and letting )3-..~ 0.

Let

( 1.9) 1(u) = f [ - } ( u~ - u 2 
- ~3 v~ ) - FK (ufldxdt 

Vwhere F (u) = C (s)ds . Then 1(u) is defined for all u c 
~~l 

and it is easily verified thatK 0 K
formally,  any critical point of I i s a  weak solution o f ( 1 . 8 ) .  We do not know how to obtain 

.— ~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~V
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critical points of I directly. However by restricting I to finite dimensional subspaces E of

L
2 

or H1, corresponding critical points, U , of l i E are obtained which can be shown to con-

verge , along a suosequence , to a nontr ivia l  solution of ( 1. 8). The machinery which is used to !~:- d

the approximate criti -al points Is provided by the next theorem . Below , B = {x € mm
l l x i  <

IR~ = {x = (x 1, . .  .,x )~ m
m

l x1 = 0, j+l <I <m ) and (lR~)
1

= {x = (x1,. . ., X )  € m
m

i x = 0,

1< 1  <J} .

Theorem 1 .10: Let J C
l(IR m

, IR) and I:lR
m
~. IR where J (x)  <1(x) for all x IR~

1 
and 1(x) < 0

for all x €  If there are cons tants  R > r > 0 such that J > 0 in (B
r \{0) fl (fl~

k
)
1 

while

1 < 0  on m
m
\B then J has a critical point In (xt IR

m
,J(X) >0) and a corresponding critic al

value characterized by

(1.11) c = lnf max
K l  - 

J(h(x)) > 0
h € r x € I g  f l B

where r = { h€  C(IR k 
~ B~ , m ) ,  h(x) = x if 1(x) < 0 ) .

Remark 1. 12: Th e proof of Theorem 1.10 is contained in the Appendix . Note that the hypotheses of

the theorem imply x 0 is a critical point for J and that J possesses a positive maximum with

a corresponding critical point in B
R. However in general the maximum of J is not the critical

value given by (1.11). In particular for our application where J = I as defined In (1 .9), I is not

bounded from above or from below in H1 , so there Is probably no hope of getting a solution of (1~~)

via maximizing I on f ini te  dimensional subspaces of H1.

To obtain approximate solutions of (1 . 8), define

E = span (sin i x sin k t , sin I x cos k t j o < J , k < n )

Since dim E = Zn2 + f l  C m , we can ident i fy E with mm 
. Set

N = span (sin i x  sin k t , sin J x cos k t l k >1 )

and

N = s p a n { s i n j x s l n k t , s i n j x c o s k t l j > k ) .

Set J = I as defined in (1 .9)  and consider l I E . By ( C 1) and (1.7), Ic C1(E ,IR) and by 
~~~ 

and

(1 .7) ,  1 <0  on mk s (N®N ) fl E .  Moreover by (l . 7 ) ,  if u L 2 and l U l l 2 = 1 , I(~~ )~~ -~~~

as al -. ~~~~. Hence there is an R = ~~~) such that  1(u ) < 0  if U c E~ and l u l l  2 > R. Lastly
L

-6-
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observ e that for r = r(n)  sufficiently small , by (f 3 )( l), I > 0 In (B \ {0)) fl (JR k ) L (where

(JRk )~L 
= N~ 

kLet JR = JR ‘zB span (sin x sin Zt) . InvokIng Theorem 1. 10, we have :

Lemma 1.13:  I I  possesses a critical value c = c (ii , K) charact erized asE n nn
(1 .14) c = inf max

k+l I (h (u ) )  > 0fl 
~~~~~ u € I R  f l B

R
where r’ = ( h €  C(1R~~~ fl B R , E )f t(u)  = U If I (u ) 0}

Rem ark 1. 15: Actual ly  to apply Theorem 1.10 , all we ne ed Is z f
K(z) > 0 instead of (f

2
) .  More -

over If is even , we can drop ( f
2 ) and weaken (f

3
) ( I ) .  See e. g. [7] or [8]. We also observ e

for later reference that (f3)( i) will not be used for any of the estimates obtained from this point

on until §5 except for Lemmas Z. 47 and 3 . 40 .

Our go~ s to show that  If U Is a critical point of l I E with 1(u ) = c , then a

subsequ~~c- ~nverges to a solution u = u(~ , K) of (1 .8) .  To achieve this , es t imates  are

required Ic ~or -is u~~. The f irs t  two steps in obtaining suitable bounds are contained in

the following r e s u l t .

For the remainder  of th i s  paper , subscripted a ’ s , ‘, ‘s , M ’ s , and A’ s repeatedly denote V

positive constants .

V Lemma 1 .16: There exist  positive constants A1, M 1 indepen den t  of n , ~~, and K and such tha t

10 
c < A

2° II ~~
(U n ) U

fl il l < M 1.

Proof: We exploit  (1. 14) to get 1
0

. Set V = (N ®N ~Dspan (sin x sin Z t ) )  (1 En Since

h(u)  = U € “n ’ by ( 1. 14)

( 1 . 17) C < max 1(u) < max 1(u)n 
ut V f l B  u c Vn R(n) n

The right hand side of (1.17 ) is f ini te by (1 . 7)  and the form of I .  Suppose the ma x imum is achieved

at u = U . Each u V can be written as u = r(a sln~ sin x sin Zt + cos ~ q’( x , t ) )  where

~ sin x sin Zt li 
~ 

= a~~, ç € (N®N ) fl E , ll~~ll 2 = 1, ~ c [0 , 2n),  and r = lul l 
~ 

. Choosing
L L L

u = i with L2 norm r = r(n), and observing from ( 1.14) that I(Li ) > 0 , we findn n
-7-
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(1. 18) ~~~~ cos 2 
~ 

f ( c 2 
- ç~)dxdt + ~~r 2 cos 2 

~ 

dxdt

+ fT FK(~
i )dxdt < ~~4j— sin 2 g

where u~~= “n + w~~ N~~ N 1. Since all Integrals on the left hand side of (1 .18) are nonnegative ,

we conclude that

(1 . 19) f r K (
~

i )dXdt < ~~
- r 2

Remark 1. 2 Implies  tha t  for I z~ < K 1

(1 . 20) FK ( z )  = F(z)  > a1j z I ° - a 2

wher e a1, a 2 
are Independent  of K . By (1 . 7)  for z > K

(1. 21) FK ( z )  = F (K)  + f ( K l ( z -  ~ + ~~~~~~~~ (z -  K) 2 
+ ~~~~~ (z-K ) 4

I n pa rticular [or z [K ,ZK ],

FK ( z )  > F ( K ) > a
1K ° - a2

while for Z K <  z ‘yK , ‘~ > 2 , we have

FK ( z )  > 1!. 1-( z ..K) 4 
> ~ (~~-l)~ K 4 

= ~~i)~ Z~ > ~~~~

provided that  p (K ~ > 1 which  choice we hencefor th  make . Simi lar  est imates hold for z < 0 . Hence

for all z €  JR ,

(1.22) FK (z)  > a 3 1z 1 6 
- a4

where 6 = rn in (4 ,0 I
) > z and the cons tants  a3, a 4 

are independent of K

Usin g (1 . 19), ( 1 . 22),  ari d the Holder inequal i ty ,  we see tha t

(1. 23) ~~r 2 
> a~ f I~~~I

6dxdt 
~~~~ 

> a
6(JU 

dxdt)2 - a ç = a
6 

r 6 
- a

6 .

Since 6 > 2, (1 . 23) gives an upper bound for r :

(1 . 24) r < f

where ~ is independent of n , ~3 , or K . Returning to (1 .17) and using the form of I , we get

- 3 2 2 3 . ’’(1. 25) c < 1( u ) < r sin ~ < r A 1 V

which proves 1° .

L u1

V

V:i

~

V
V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
-
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To ver i fy  20, observe f i r s t  th a t

(1. 26) c = I (U
n ) = f  [ - ~(u 2 

- u 2 
- ~~ v 2 ) - F K ( U )  ]dxdt

Since u Is a cr i t ical  point  for I I E

( 1 . 27) I ’(u )ç = 0 = f~~
u
~~ ~ 

- u~~~ - ~~ ~~~~ - f K1u
fl

)c)~~dt

for all ~ c E where q’ = + >~, u~ e N , x t’F1 . C oosing ~ = U in ( 1 . 27) and fo rming  ~~~~ ~~~~ -

27) yields

(1 . 28) c = 
~~~~ 

1K~~n~~n - FK (U
n )) dXdt

A simple computation shows that  (wi th  ii = u )

(1 . 29) f ( ~~~
f K( u ) u  - FK ( u ) ) d x d t  =f ( - ~~f ( u ) u  - F(u))dxdt

T T1( u )

+ f  [f 1( K ) - F ( K )  - ~ ( u - K ) f ~~) +~~ K ( u - K ) f ’ ( K )  + ~~~~ K ( u -  ~~ +~~ ~ K ) ( u - K ) ~ ]dxdt
T 2

( u )

+ f [~~f ( - K) ( -K) ~ F(- K)- ~~(u+K)f ( - K)~ f K ( u + K ) f ( - K )  ~~~~~~~~ (u+K)~ +~~~ K) (u+K)~ ]dxdt
T3

(u )  -

where T1(u )  = { (x , t ) Ti I U( x , t ) l  < K ) , T 2
( u )  = {(x , t) T I u ( x , t)  > K), and T3(u) = T\( T

1
( u ) U  T 2~~~) .

Using (f 3)(ii), i t  is easy to verify that  there is a constant  > 0 and independent of K such t L~it

(1 .30) f ( ~~
f K (u) u  - FK

( u ) ) d x d t > -‘y 1+ ( ~~-e) f  f ( u ) u  dxdt
T T1(u )

+ f  [(~~ 
- 0) f(K)K ~~~~~~ K ( u - K )

3 
+ ~~p ( K ) ( u - K ) 4 )dx dt

T2(u)

+ f  [(~~ -0) f( -K)(-K) + ~~~~~ ( - K ) ( u 4 K )
3 

+ p (K )(u +K ) 4 j dxdt
T 3(u )

provided thot  p ( K ) > 1  ( h K ) 4 
+ f( -K 1 4 ) which  choice we make.  Last ly there is a cons tan t  > 0

and Independ ent  o f K such t h a t

(1 . 31) f  f ( u )u d x d t  < ‘
~ 

+ f  f ( u ) u  dxdt
T T

1
( U )

+ f  [foaK + p(K)K(u-K)
3 

+ ~ p( J Ø ( u -K ) 4 ] dxdt 
V

T 2
( u )

+ f  ( Kf(-K) + p(K)(-K) (u+}~
3 

+ -}~~K )( u +k ) 4 ]dxdt
T3

( u )

-9- 
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I

provided that

~ K) > 1(K) 4 
+ f ’ (K ) ~ + K 4 1’( K ) 4 + f ( - K ) 4 

+ f ’ ( - K ) 2 
+ k4 f ’ ( - K ) 4

which we fu r the r  a s sume . Combin ing  ( 1 . 28) , ( 1. 3 0 ) -~ 1. 31) yields

( 1 . 32) cn + \ 3 
> •

~4 
f f

K n ~~n~~
dt

for con stants  
~ 

independent  of n ,~~, and K . Hence ob ta ins

Re m ar k  1 .~~~ . Fo r l - ~ter referenc e , observe tha t

(1 . 34)  
K
~~

n
~~~L

l < M
2

wi t h  M , x~~~ t - - :  - .~ of n , ~ , and K s ince (w i th  u = u ) ,

(1 . 35) f f~~~ ) l d xdt < f 
~K ( u H d x d t  + I. 1K~~~~ 

d xdt
T T4(u)  T 5( u )

where T
4
(u) = {(x.t) € TI lu (x,t )I <1) and T5(u) = T\T4(u) . Hence (1. 34) fol1o~~ ~ro~ (1 . 3~ )

and 20 
of Lemma 1.16 . r~ote also from the same result  and the form of I (u )  t h a t

(1 . 3 6) lk’n ll 
~ ~ 

A2L
where A

2 is independen t  of n and ~3 but depends on K

Remark I. 37: It is not d i f f i c u l t  to ver i fy  tha t  to obtain the resul t s  of t h i s  S1 V I I O .  0 S U f I i V V V S  to

assume (1
3

) and

(fi ) 1€ C(IR , IR) ari d 1(0) = 0

(f~) f is monotone nondecreasing

provided that we drop the f’(K) term in ( 1 . 7 ) .

I

-10-
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§2. SolutIon of the modified problem.

Starting from the bounds jus t  obtained for f K( u ) ,  we shall use bootstrap a rguments  to

estimate u In stronger norms . These new estimates depend on p and K . However they su f fice

to show a subsequence of ( u )  converges to a classical solution u = u()3 ,K I  of the modified C q V V t -

tion . An additional argument  shows lI u Il C > y( 13 ,K)  > 0  so u Is a nontrivial solution of (1. 8) .

The above program will be carried out as a series of lemmas . First some brief pre l im inary

remarks a bout N . From (1 . 5), we have If v C N, v = p(x+t ) - p( -x+t)~ v + 
- v where P c  L2(S 1 ) .

Imposing the normalizat ion

21r
( 2 . 1) [p] E f  p(s)ds = 0

0
makes p unique.  A simple computation shows for p ,q L 2(S ) ,

( 2 . 2) fp ( x+t) q (_ x +t )dxd t  =

Hence for v v + 
- v c N , (2 . 2) and our normalization [v +] = [ v ]  = 0 imply

(2 . 3) f  v 2 dxdt = f ( ( v + ) Z + (~~~) 2 )d dt
T T

With these observations in hand , we begin our estimates for U = v + w N

Lemma 2 . 4 :  If  u is a critical point of I I  and 1(u ) = c , there are constants M , M > 0

V 
(2 . 5) l l V n ll c ~ I v ~~ I I~~ 

< M
3/~ 

~ 4

and

( 2 . 6) P lI v
~~~lI 2 < l l

~
x (

~~~
Il

Lz ~ M4(l + l I u ~ ll 2 )

where M 3 is independent of n , ~3, and K and M 4 depends only on K .

Proof: From Lemma 1.13 we have

( 2 . 7)  I’ (u )~ = 0

for all  ~ c E .  Choosing çs = v C v + 
- v P~ (x +t )  - Pn

(_ X + t )  yields

(2 .8)  p II v 1ll 2
2 = f  f K( u ) vn dxdt < I i v ~ I l~ ‘ K

~~
n
~~L

l

< z f l v~ ‘1 C K
~~

n
~~ L

l

since lI v ~ ll C = ll v Il C . Using the normal izat ion [ p ]  = 0 , we also have

(2 . 9 )  lI’ ~~ll~ 
= lI~~l! I ~ (Zn )2 ll p~ ll 

~C(S) L(S 1 )

— 11— 
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CombIning (2 .9)  with (2 . 8), (2 . 2 ) - ( 2 . 3), and (1 . 34) gives (2 . 5). V

To obtain (2 . 6),  let ~ = v
~~~

€ E in (2 . 8). Then

(2 .10) Pll Vntt ll 2~ = K n )
~

m nt t~~~
1t < K n L2 l”ntt

~~L
2

The definition of f K(z)  impli s there is a constant a = a(K ) such that

< a(X ) (1 + l z l
3

with this observation , (2 .10 )  implies (2 . 6).

Remark 2 . 11: Note that (2. 10) contains a l l f K(u )ll 
~ 

Lerm on Its left hand side while Lemma 1.16

only provides us with a bound on II f K
(U )U 

L’ 
The same estimates would have been obtained

had we been working with I instead of It was to bridge this regularity gap that  led us to

In troduce How this is done will be seen shortly in Lemma 2 .18 .

To continue , a representation theorem for solutions of

( O w  = g ,  0 < x < t r , t JR
(2 .12)

L w(0 , t) = 0 = w( Tr , t ) ,  w(x , t+Zir) = w(x , t)

is required .

Lemma 2 . 13: If g c C~ II N1
(H~ fl N’), 1 > 0 , there exists a unique w € C1

~~ fl N1

V 
(H 1

~~ fl I1~ fl N1) satisfying (2. 12) and the map from g-~ w is continuous between these spaces .

Moreover letting

(2 . 14) (~I ’g)(x , t) = _ I j
.Ir
j

t_ x+~ g(~~, T)d~rd~ + ! 2L.~~f1r
f

t1~ g(~ ,~)dTd~
x t+x-~ 0 t-~

for the C~ case , w has the representation

V (2. 15) w(x , t ) ( W g ) ( x , t) - Z Q(~’I ig ) (x, t ) )

where

(Zp)( x , t) = p(x+t) - p(-x +t )

and

1( Q4 ’)(y) 
~~ 

f  (4 i (y-s , s) - 4,(y+s , s))ds .
- 0

Remark 2. 16 A proo f of the C~ case can be found In [9) and the H 1 case in [10). For J = 0, the

solution is only a weak solution of (2 . 12).

-12-
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Some further notation is required at this point . For £~ C IRA
, a C (0,1), and U e

let

~ 

l u ( x ) - U ( Y ) I  l l u l l~~~ ÷ H (u)

It is easy to veri fy that

I ll z~ll < 2 ) ~p~l
(2 .17) C (T) C (S

L ll~~ ll a < 2 ll ~~ll aC ( S ) C (T)

Returning to our est imates for u , we have

Lemma 2. 18: There i s a  constant A 3 depending on K and p but Independent of n such that

~ (2 .19) 11w II ! < A
3n

Proof: Equation (2 . 7) implies

(2 . 20) 0 w = ~3 Vntt 
- 

~
‘n 1

K~~n~ ~n

where P1.~ denotes the orthogonal projector of L2(T) onto E .  Applying Lemma 2 . 3 and (2 .17) to

(2 . 20) shows for any a c  (0 ,1 ) ,

(2 . 21) 11w II < ~ II” ~ II . -n
~~~

a — 2  n a

To further  es t imate  the right hand side of (2 . 21), let

x(x , t) = [if j
f ~x+~ ~ ,T ) dTd~

x t+x-~
Then by Schwarz ’ inequal i ty ,

(2 . 22) Ix (x , t ) l  ~ ~~ ,r fl~~J 2
L

and similarly

(2 . 23) lx (x +h , t+k ) - x(x , t ) l  < (f A~
2dT~~

)
~(f A  ~

2dTd~~~ < a~( I h l  + l k I ) 2 Il~~ll 2
L (T)

where A denotes the region of Integration for the difference In the two va lues  of x . Since Ca(T )

Is a Ban ach algebra ,

— (2 . 24) lkOX Il a ~ 
a2 ll9 ~ll 

Ca

— 13 —
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for all ~1x c  Ca . Hence taking a = ~ and combining (2 . 20 ) - (2 .  24) yields

(2.  25) II W I! < a 3 lI~ v~~~ - 1’n f,~( u )  
L2 < a

3
(~ II ~~~ L 2 + II f.,~(u 

L 2

Applying (2. 6) we further  conclude

( 2 . 2 6 )  11w II < a (I + I I u ~ II
4 n~~~z 4 n L

where a4 depends on K

To improve (2 . 26) and obtain (2 . 19), some simple observations and an interpolation a r g u -

ment are used . By (1 . 36) and (2.  5),

(2 . 27) ll u ~ ll~~ ~ (lI v~ I~ + l~v
fl II C) lI u

fl II 2
4 < ( - j-~ + lI w n l~~A~

Using the Holder inequality and (1 . 36) and (2 . 5) again shows

(2 . 28) 11W II 
~ 

= f l U  - v l l  
~ ~

L L

where a
5 

de pends on 
~ 

and K .

By a general Interpolat Ion inequal i ty  [11] , for- -~~~ < X  <~~ < v <~~ and e. g. ç’ C~~(T)

(2 . 29) h
~~

h
L
1/
~ ~ ~1lkIl ~~~ Il ~~II~j~~

where for s < 0 , if p Is the greatest integer in - and -a = p +

I ~ ll~~~II~ if
I k I p

Il~~ll ~ 
=

L

~ 
Ha(D°

~
q
~

) if a > 0
I °~ I P

(Actually the Inequality in [11] requires ç to have compact support  but because of our b o u n d a ry

conditions In x and periodicity in t , the result readily extends to our case . )  Choosin i

X =  -~~~ shows ll c ’Il 
~ 

= H 1( ç ’) .  Further se t t ing v = ~ , and ~i = 0 in (2 .  29) gives
L

( 2. 30) II c’ll < ~y 1( H i (~~)) 2 lk ll~ 4 ~ ~ ll c’!I~~i Il c’ll~ 4C 2 L C 2 L

Combining (2 . 26 ) - ( 2 .  28) and (2.  30) then yields

(2 .31) 11w II < ~ (I + lw fl~~~In
~~~z fl C Z

from which the lemma follows.

-14-
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Now that (2 . 19) has been established , it is easy to use bootstrap a rguments  to e st ima te

higher derivative norms of (u ) .

Lemma 2. 2: There is a constant  A 4 depending on K and p such that

(2 . 3 3) lI v ~ II 
~ 

÷ lIW n Il 2 < A 4H H 
—

Proof: By l e m m a  2. 13 with j = 1, ( 2 . 5) - ( 2 . 6) ,  and (2 .19),  we have

(2.  34) 11w IL < a1 11p v~~~ - ~n 
fK(un )II

L
Z <

From (2 . 7 )  with ç’ = v we obtain

(2 .  35) p 11 v 3 11 22 ~ I ~ ~~~~~~ 
v 3 

dxdt l

s o ( 2 . 5), (2 . 19), ( 2 . 34) and the Schwarz inequali ty give

• (2 . 3 6) II v 3 11 2 < a 3nt L

For v N (1 ck
, k > 2 , [iv = 0, and it is easy to veri fy that  all derivatives of order k of v ha~ e

the same L2 norm . Hence (2 . 3o) and (2 . 5 ) - (2 . 6) imply

(2 .37 ) lIv~ ll 3 < a
4H

Final ly  Lemma 2 .13 again with  j = 1 and our above est imates show

(2 . 38) Ilw~II 2 < a~,
H

Thus (2.  33) obta ins

We can now solve (1 . 8) .

Theorem 2 . 39: The modified equat ion (1 . 8) possesses a nontr ivial  classical so lu t ion .

Proof: Lemma 2 . 32 and stand ard embedding theorems Imply that  along a subsequence of the u .

Vn converges in C 2 fl N to v = v(p , K) H~ fl N and w converges in 11~ fl N 1 ( d rid t h e i e !~’:

in C~ fl N 1) to w w(ç3 , K) H
2 fl N 2

. Thu ~e can pass to a limit in ( 2 . 7 )  to con c l u d e  for

u v + w that

(2 . 40) I ’ ( u ) ~ = 0 for all  ç c L)  En~ ~J n

This impl ies  u s a t i s f i e s  (1. 8) a .  e. Since f K(u) C C and w s a t i s f i e s  ( 2 . l~~) .  we see t h a t  v

Assuming  for the moment  t h a t  v C 3
, Lemma 2 .13  shows w C2 and hence u is a c lass i~~i~

solution of the modi f i ed  equa t ion .

_



To verify that  v ~ C
2
, we write v = p(x +t )  - p (-x+t) with (p] = 0 . From ( 2 . 40) or (1 . 6) It

follows that

(2 . 4 1) [-p( p”( x+t ) - p ’(- x+t ) )  + f~ u) ]R(x+t ) - ~( -x+t))d x dt  = 0

for all 1, c L2(S ). Denoting the expression in brackets by 4h(x , t) ari d using the periodicity of ~

and 4i l n t s h o w s

(2 . 42) f
lrfzlr 

€~(x , t) ~(x+t ) dxdt  = J ~~ ’~~ €),( x ,t) t (x+t)dxdt

~ 2ir=f  f  4i( x , s-x)~ (s)dxds
0 0

and

• (2 . 43) f ~ f
2
~ 4i( x , t)~,(-x .ft )dxdt = f”f 2

~~~(x , s+x )~, (s)dxds .
0 0  0 0

Thu s

(2 . 44) f
ZW 

~.( s)[f ~~(4J ( x , s_x) _ U ( x , s+x) ) dx) ds  = 0
0 2 1  0

for all ~ I. (S ). Hence

(2. 45) f~ W~(x , s-x) - q~(x , s+xfldx = 0
0

Substi tuting for 4 from ( 2 . 41) and s impl i fy ing  yields

(2 . 46 ) 2ir p p”( s)  = 1
2ir 

~ (u (x s - s ))  - f K(u (x , s+x))dx

Since w c C and v C
2
, (2 .  46) shows p ” is continuous in s and therefore v C 3.

To complete the proof , we m u st show u ~ 0 , i. e . u is a nontr ivial solution of ( 1 . 8) .  Thi s

is a consequence of the following lemma .

Lemma 2. 47: For each (1, K > 0 , there is a constant .y = ~(~~,K ) > 0 Independent  of ii such tha t

(2 . 48) ll ’~
1
~ll(~ 

> ~j

Proof: From (2 . 5) ,  (2 . 8), we have

(2 . 49) 
~

1 1”
~n

11C < al l 1 f
K

(t
~fl ) I I C

By (f 3( i ) ,  for al l  t > 0 , there Is a constant  A A (K ) > 0 such th at

(2 . 50) z f~,( z) < £ z~~
2 

+ A  l z J 4

for all  z C JR . Employing (2 .  50) in (2 . 49) shows
a r~

(2. 51) l i v II < ~~~~~~~ A + ..._ ~~.. 
An c - _  p n p

-16- 
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where An = Li v “ C + ll W ll C~ From Lemma 2 .13 , (2 . 6), and (2.  50) we get

(2 . 52) lI w ll < a I l -Pv + 
~n f

~
(u )II < 2 a3 Il fK

(u ) II 
~ 

< a 4 (ç~ A + A A 3) .

Adding (2 . 51)- ( 2 . 52) yi elds

(2 . 53) A <(- j~ - + 2 a4
) c A + a 5A 3

Since the constants  and a4 are indep endent of n , on making c (a
1~~~

’ + 2a 4
) < f , we get

(2 .  54) A < a
5 

A3 or A > (2a
5

) 2

Thus the lemma ari d Theorem 2 . 39 are proved .

Remark 2. ~S: From ( 1 . 34) and the convergence of a subsequence of the u to u ( p , K)  we get ,

(2 .5 6) iI f K (u) I I  < M 2
a L

Remark 2. 57: Had we only assumed ( fj )~ ( f ~ ), and (f 3 ) (see Remark 1. 37), the resul ts  of th i s

section remain unchanged  un t i l  Lemma 2 .32 which is lost . However the  un i fo rm bounds o h t a i t c :

for I v  2 + 11w II are suf f ic ient  to get a subsequence of v + w to converge to a fun t io i
H n C 2 n n

U = v+w C w h i ch  s a t i s f i e s

(2.  58) f  ( u L l ç’ - P V 
~tt + f(u) .p)dxdt 0

V 

for a l l  ~ € C~~( T ) .  
T
Ar g u m e n t s  in the proof of Theorem 2 . 39 f u r t h e r  show v ~ C

2 
and w C’.

La s t ly  the proof of l e m m a  2 . 47 is una f f ec t ed  for th i s  case so u Is a n o n t r i v i a l  w cj ~ so lu t ion  of

(1 . 8) .

-17-
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53. A weak solution of (1 . 1).

In this section , the solutions u = u(p , K~ of (1. 8) will be used to get a weak so lu t ion  of ( 1 . 1 ) .

Our program is to f irs t  get an upper bound for ll u (P , K ) l I C Independent  of ~3 and K . This  p e r r 1~

us to choose K so large that  f K(u )  = f ( u )  for u = u(p , K) . With K thus fixed , we show j u (~~.~~~)

Is equicontinuous in C(T) from which it easi ly follows tha t  (1 . 1) has a weak solution . A n adc:-

tional comparison argument  shows the solution we f ind is nontr iv ia l .

To begin we have :

Lemma 3.1 :  Let v = v(p , K ) .  Then with M 2 as in (2 . 56) ,

( 3 . 2 )  p ll v~~II I ~ M 2 /’n .
L

Proof: Writing v(x , t)  = p(x+t)  - p( -x+t ) ,  from (2 . 46) we have :

( 3 . 3 )  2~T l3f
2
~ IP (s)Ids ~ f

2
~f~

(I f K(u(x,s_x ))I + I f K u x , s+x
~~l dxd s.

Reversing the steps which led from (2 . 41) to ( 2 . 46) then  shows :

( 3 . 4 )  ~ P II p II 1 1 ~ II f xtu) 1I 1L ( S ) L.

from which (3 . 2) fol lows via ( 2 . c6) .

Corollary 3. 5: There is a constant  M 5 Independent  of ~3 and K such that

(3 . 6) Il w(P,1
~
)U c < M 5

Proof: From (2.15) we get

11w “ C < a~ II -~3 ~~ + f K
(u)  

L1

Hence the result  follows from (3 . 2) and (2 .  56).

Our next goal is to get a bound for I v  II
~ 

independent of ~3 and K . This is somewhat

delicate since we have to get a pointwise estimate while working w i t h  the  projection of ( l . t~) on

N .

Lemma . 7 :  There is a constant  A
5 such tha t  for all ~3 , K > 0 ,

(3 . 8) ll v( P~K ) lL C < A 5

Proo f: If  v 0 for some P, K , we tr ivial ly  have a bound . Hence we as sume  v / 0  for what

follows . From (2 . 41) we obtain

-18-



(3 .9)  f 
~~~~~~ ~~ + 

~K~ ’~~~
’ dxdt = 0

for all ç C N. Further assume ~ ~ ~~~~~ . Then (3 .9)  can be rewritten as

(3 . 10) f[~ ~~~ + ~~K
(
~~~

w) - f K
(w) )c)dxdt = -f f

K
(w) c

~
dxdt

T T
We will get the est imate (3 . 8) by choosing ç~ to be an appropriate nonlinear  funct ion  of v

Define a function q : IR- IR by q(s)  = 0 if s i  < M ; q(s) = S - M If s > M; and q ( s )  = s + M

If s < -M. Further set v~ p(x +t )  - p( -x+t )  v + 
- v with [p] = 0 , q+ 

= q(v + ), q = q(v ) ,

and choose ~ = q+ 
- q . Then q’ N by construction . Consider

(3 . 11) f  v~ 
~~~~ 

dxdt = f[q I ( v + )(v~ ) 2 
- q t (v +)v~ v - q ’(v )v v~ + q ’( v ) (v ~ ) 2

1d xdt . 

V

Since [vt] = 0 , the middle two terms on the right in (3. 11) vanish  by (2 . 2).  The r e m a i n i n g  t e r ms
a

are nonnegative since q’ > 0. Hence (3 . 10) implies

(3 . 12) f ( f K(v+w) - ~~~~~~~~~~ )dxdt < lI f~(w)II~~f(Iq~ l + j q~~ )dxdt

For any 6 > 0 , let T6 = {(x,t) ~ TI Iv(x,t)l > 6 } ,  T~ = {(x , t) T f v ( x , t )  > 6 } ,  and

V T~ T6 \ T~ . By (f 2 ), the iri tegrand on the left  hand side of (3 . 12) is nonnegative . Therefore

(3 .13) 
~~~K( v 4

~~
1) - f~ ( w )) (~~~_ q )d xdt > f 

~~K
(v +w ) - f K

( w)) . (q~ - q )dxd t .

Define

mm f (z+~,) - f ( r,j, z > 0

(3 . 14) 4,K~~ 
= —

max f K
(z

~~
) 

~
1K~~

1’ z < 0

L I~~l~~M 5
with M 5 from (3 . 6) .  By 

~~~~~~~~ 
~~ (z)  Is strictly monotonically increasing,  and by (1 . 7 ) ,

L~~ as z -  ±~~. By ( 3 . 14),

4, ( v)
(3 . 15) f ( f ~ (v +w)  - f~( w )) (~~ - q ) d xdt > f —

~~ v(q t q )dxdt

+
> — 5 v(q - q )dxdt

V
C +T6

since v(q + 
- q )  > 0, Observing tha t  for z < 0

(3 . 16) 41K
(z)  = - mm f (r,) - f ( z + ~~)

i~~1~~~M 5
K K

-19- 
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we similarly find :
i4, ( - 6)

(3 .17) 5 (f
K

(v + w )  - f~(w) ) (q ~ - q )dxdt > 
~~~~~~~~~~~~ 

f  v(q t q )dxdt
C T6..

For z > 0 , let 
~ K

(z )  = mln(4iK(z) , - 4J K
( _ z ) ) .  Then 

~ K(z )  Is str ictly monoton ically increasing

and px
( z)_ =

~~ 
as z-.~~ . B y ( 3 . l 5 ) ,  (3 .17)  we have

~L (6 )
(3 .18) 

~ K~
’
~~

’
~ 

- ~~~~~~~~~~~~~~~~ > ~~~ f v(qtq )dxdt
T6 C T 6

= ~~~~[f(v~ - v )(q~ -q )dxdt -5  v(q~~-q )dxdt]
C T T\T6

> 
~ 

[f(v ~ q~ + v q ) d x d t  - 6 f ( l q~ I + Iq i)dxdt] ,

the last Inequal Ity  following via (2 . 2) since [v~ J 0

The definition of q(s)  implies s q(s)  > M~q( s)~~. Hence (3 . 12) , (3 . 13), and (3 . 18) imply :

( M - 6 ) ~L ( 6)
(3 .19) 11

~ K~”~
11 5 ( j q ~~ + I q ~~~)dxdt > Iv Il 

K 
f ( ( q ~~ + I q ~~ )dxdt

C T C T

Choosing any M < I I v~ I I C, the Integra l term in (3 . 19) is positive so we can divide by it and

obtain:

(3 . 20) I l v f l C ~~~~ ~ K~~
’
~~C -

SInce (3 . 20) Is valid for any  M < ~~~~~~ we can pass to a l imit  and let M = I I v*Il c. Further

noting that  II V II C < 2 lI v~ I i C, (3.  20) implies

l iv Il~ - 6
(3. 21) 

2 * ~~~~ ~

Choosing e .g .  6 = f l iv ~ !1~~
, we get

(3. 22) 
~K

(2II v iI C
) 
~ ~~~~~~~~~~

By (3 . 6), the right hand side of (3.  22) Is bounded independent ly  of ~3 and K . By (f 3)( i i )  a nd

(1.7) ,  given any A > 0 , there i s a  z0(A) such that  l f K( z ) I  > A for all l z l  > arid for al l

K. UsIng thedefinit lon of 
~

L
K , (3 . 8) follows from these observations and the lemma Is proved .
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Remark 3. 23: Related but simpler arguments using q can be found in [1], [10]. A somewhat

cruder argument using (f 3)( I I )  and avoiding (f 2) could have been employed to obtain (3 . 8).

However the above proof makes the equlcontinuely argument of Lemma 3 . 29 much briefer .

Remark 3. 24: Henceforth we take K = M
5 + A 5 so at a solution of (1 . 8) we have f

K( u )  = f (u ) .

Thus we can and will generally suppress K In what follows .

Corollary 3. 25: There is a Constant M 6 independent of p such that

(3 . 26) li w lI l~~ 
M 6

C
Proof: By Lemma 2. 13 ,

(3. 27) lIwli < a
1 fl -~3 

~~ 
+ f (u) I i

Cl C

From (2. 46) we get

(3 . 28) “tt ’1 C ~~ 
zil f(

~1)li c V

Hence (3 . 26) follows from (3.27)-(3.28), (3.6), and ( 3.8).

The last preliminary needed to obtain a weak solution of (1 . 1 Is

Lemma 3. 29: The functions v = v(p) form an equicont inuous family in C (1 N .

Proof: The proof is similar  to Lemma 3 . 7 so we will be brief . Let u = v + w be a solution of

(1 . 8) and Ii JR. Set v(x , t) = v(x , t+ h ) ,  w(x , t) w(x , t +h) ,  U = V + w , V = v - v , W = w - w ,

and U = V + W. From (2 . 41) we have

(3 . 30) f ( -~ ~~ + f ( u)  - f (u ) )  ci dxdt 0
T

for all ç C N . This can also be written as

(3. 31) 5 p 
~~~~ 

dxdt + f ( f ( +w) - f (u ) )  ~ dxdt = - f ( f (~) - f(~ +w)) qi dxdt
T T T

Choosing ~ = q(V~ ) - q(V ) Q+ 
- Q where V+ 

= ~+ 
- v~ , etc. yields the analogue of ( 3 . 1 2 ) :

(3.  32) 5 (f ( V +u ) - f (u ) ) (Q ~ - Q )dxdt < II f(~~)- f(~~+w) 11 C f i  I + I Q ( )dxdt .
T T

From (3. 6) , (3 .8 ) ,  and ( 3 . 2 6 )  we see

(3 .33)  ll~(’~) - f(~ +w ) l j C ~~ i tI M~ll c ~~ 
y1M6i h l .

Next let 4 , ( z ) ,  ~( z )  be as In Lemma 3 . 7 where we drop the subscript K and replace M 5

by M 5 + A 5 . Arguin g  as in Lemma 3 . 7 we f ind

-2 1-
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( 3 . 3 4 )  f( f(V+u) - f (u ) ) ( Q~ - Q )dxdt > j f~-~ ( M - b )  f ( 1 Q
f

, + IQ I)dxdt
and

(3 . 35) I~(Ul v*IIc) ~ 4 V ~y
1 

M~~ h~

or

(3.36) max 1 1p ( s+h ) - p( s ) l  < 2 ~~
1(4~y M h~ )

S C S  1 6

where as usual v(x , t)  = p(x+t) - p(-x+t). Thus (3. 36) provides us with a modulus of continuity

for v independent of ± and the lemma is proved .

Theorem 3. 37: if f satisfies (f 1
)-( f

3
) ,  ( 1. 1) possesses a nontr ivial  weak solution u = v+w C

(C fl N) ~B(C ’ fl N1) sat isfying

(3 .38 )  f ( u o qi- + f (u)  ç’)dxdt = 0
T

for all ~e C~ ( T) .

Proof: Let u ()3 ) = v(~3) + w(~ ) denote a family of solutions of (1 . 8) for 3 > 0 . By Corol lary

3. 25 , the funct ions  w(~ ) are bounded in C1 (1 N1 and by Lemma 3. 7 and 3 . 29 the f u n c t i o n s

v(~~) are uniformly bounded and equicont inuous in C fl N . Hence as 3-. 0 along some subse-

quence , u(~ ) -. v+w (C fl N) I’(C 11 N1) . Thus writing (1 . 8) in its weak form and pass ing to

a limit gives ( 3 . 3 8 ) .

To see that  w C1 fl N1, It s u f f ices to show t h a t  w sa t i s f i es  (2 .15) with g = - f ( u ) .

By (3 . 8), (3 . 28) and an in terpola t ion  inequali ty [11],

(3 . 39) ~11 v~t(~ )~ 
L
1 ~ ~ I~~ P~I~ v(~ ) 

~~ < a
1~~( ~ f(A

5 + M~ ) ) 2 J~ 0

as p -. 0 . SInce 13 11 v~t Ij 
~~ 

0 , we can pass to a l imit  in (2 . 15) for w( 13) to get ( 2 . 1~ ) for w .
L V

it remains to show u is a nontr ivial  solution of ( 1 . 1). This is a more d i f f i c u l t  problem

than that confronted in Lemma 2 . 47 since we no longer can use the 13 term to help  us as ea r l i e r

and (f 3) ( i )  gives us no information on how rapidly z*(z) -. 0 as z -. 0. We get around

these d i f f i cu l t i e s  with the aid of a comparison a rgument . The following lemma completes the

proo f of Theorem - • 37 .

Lemma 3.40: There is a y>0 such that iIw(P)IIc > 1 for all  3 near 0

-22-
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Proof: From (2 .50) we see

(3 .41) FK(z) ~ + ~~- z 4 V

for all z IR. Hence

(3 .  42) 1(u) > J (u)  f [  ~(u 2 
- u 2 

- 13 v~ - tu 2 ) - ~~~~ u 4 )dxdt

for all u U E . Recalling thatnn t l N

F = {h C(~~ ( )  
fl ~~ )+l E )  11(u) = U if 1(u ) < 0  }

we have

(3 . 43) c = inf max 1( 11(u) ) > inf max J( h (u ) )  b
h~ F u € B  fl JRk+l h € r  u c B  11

We claim that b is a c~~ti:al value of I ndeed for u c  N + fl E (JR k ) i

(3 . 44) f f  (u ~ - u 2 )dxdt > ~f u 2 dxdt .

Since for u c E , l u l l  
~~ 

= o( l u l l  2 ) at u 0, by requiring that  t < 3, we see there exists

r = r(n , K) > 0 such that  J (u)  > 0 for u e ( B \  {0}) fl (JR k ) J~ It is now easily verif ied tha t

sa t i s f ies  the r ema in ing  hypotheses of Theorem 1.10 and b as defined in (3 . 43 )  is a cri t ical

value of with b > 0 . From (3 .  4 3 )  and (1 . 28) , we have

V (3. 45)  cn

n 

= ~~ f K(U n )U n - F
K

(u ) ]dxdt  b = A f dxdt

where u ( 13, K) i s a  critical point of corresponding to the critical value b . As was

observed in Remark 1.15 , the fact tha t  f sat isf ies  (f 3) ( i )  was only used to ver i fy  the t~y p o th ~ s~’

of Theore m 1. 10 and would not be used again unti l  Lem ma 2. 47 . Since J does s a t i s fy  the hyp e-

hypotheses of Theorem 1 .10 and e z + A z 3 satisfies (f 1), 
~~~~ 

and (f 3 ) ( i I ) ,  it follows from the

e s t i m a t e s  of § 1-2 tha t  along a subsequence  of n- .  ~~, ~
i (P, K) converges to a cla ssical  solu-

tion u( p , K) of

D~j - P ~~~ + t ~~~+ A  u 3 = 0
(3 . 46)  C

u( 0 , t )  = 0 = u ( i t ,t) ~i ( x , t + 2Tr ) = u(x , t)

Morcover from (3 . -t~ ), we have

( 3 .4 7 )  
.~~ E~ f K ‘(P, K) )  - F

K(u( (3 , K)) ]dxdt > A ~f 
~( 13 , K) 4 dxdt .

-23-
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To see that ~ Is a nont r iv ia l  solution of (3. 46) requires  a slight modification of the proof of

Lemma 2 . 47 . SInce

(3 . 48) 
~~~n~’n = 0

we find that

(3 .4 9 )  p i l~ II ~ + £ Il ~ 11 2
2 < A I

~~
II
~ 

f l~~~i
3
dxdt

Usi ng ( 3 . 4 9 ) ,  we can replace (2 . 49) by

(3. 50) MIvfl llC < aI A II I
~
3 IIC <0i A A 3

with A = 
~‘n U C 

+ W
~~~C. Combining (3. 50) with (2 . 52) which remains valid fo r ~~, shows

(3 . 51) ~ An < a~ A A + 0
4 13(c A + A A3 )

where a
4 

Is independent  of C , n , 13, K. Choosing C < ( 2 0 4 ) 1 given A > 13 2A 2
(0

1 
+ 0

4
) .

Hence II G P , K 1l c sati sfies the same inequality.

Now to obtain the lower bound for ll w ( P ) II C ( where we suppr ess the dependence on K vie

Remark 3. 24) suppose to the contra ry that w ( 13)— 0 along some subsequence . From (3 . 22) we

conclude the same is true for v (p) and hence u( )3 ). Then by (3. 47),  II~ (13 II 
~ 
-. 0 as 13 —. 0.

L
Applying (3 . 4) for i~ and (2 . 15) shows

(3 . 52) lk(P) lI c~~05 ll c u ( 13 ) 4 - A  u~3)
3 II 1 0

as 13-. 0 . Next employing (3 . 10) for th e ii problem with 
~ 

= ~~ gives

(3. 53~ f (~4 
+ 3 ~~~~ w + 3 -2 w 2 )dxdt = -f V dxdt .

T T
An application of the Hôlder inequa l i ty  implies

(3 . 54) II v( P ) lI  
~ 

< a6iI w (p)Ii 
~L L

Since ~~ 
= - 

~‘ with [‘~] = 0 and by (2.  2 ) ,

(3 . 55) f 4dxdt f((v4-)
4 

+ 6(v ~~) 2 (v  ) 2 
+ (v  ) 4 )dxd t

we have

(3. 56) f((~+ ) 4 + ( v ) 4 )dxdt < a~

Returnin g to (3 .10 )  wIth c = q(;~ ) - q(~~~~~ ) = q 4 
- q and making  some crude est imates  gives:

(3 .  57) f ~
3(q~ - q )dxdt  < 07(iI v l~ 

+ Ii~~l l II~~I~ f ( I q ~H + Iq ldxdt

-24-
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Expanding the left Integral ari d using (2 . 2) agaIn shows :

(3. 58) f  ~
3(q~ -q )dxdt > 

f

~~~~~~+~~ 3 q~ + (~~~) 3 q - (~ 4 ) 3 q - (~~~)
3 

q4)dxdt
T T

where we dropped two nonnegative term s from the right hand side. Using (2 .  2), (3. 56), and the

Hôlder inequality to estimate the last two terms on the right In (3. 58) leads to

(3 .59) M 3 f( j q~ l + ~q~~ )dxdt < ~~~~~~~~~~~~~~~~~~~~~~~
T T

< a~( 
~ ‘1 II~ + II W II~~~~

) II W I i  Cf (I q~) + I q - I )dxdt

(since s3q(s) > M 3
~q ( s ) I ) .  Arguing as In Lemma 3. 7 , we conclude

(3. 60) 
~

Returning to ( 3. 52) again and using (3. 60) yields
a

(3.61) I1~
(P)IIC ~ Z1T 0

5 (1 9~
1l
~~~~

IlC + A (l+a9 ) 3 li~~( p) Il~ )

Note that the constants a~ , 0
9~ and A are independent of 13 and and 0

9 
are independent

of c. Moreover (3 . 61) holds for all 0 < e  < min( 3,(2a 4
)~~ ). Thus further choosing 0 < c  <

[4 2 a5( l+a
9

)]~~ shows

> ( 2112 05

contrary to (3. 52). Thus Lemma 3. 40 and Theorem 3. 37 are proved .
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S4. Regu la r i ty  of the weak solution .

We have shown (1 . 1)  possesses a weak solution u = v+w with v ~ C fl N and w fl ~~~~~~

In this  section we shal l  prove that  in fact v e C1 fl N and w ~ C 2 II N1. It then follows tha t

D w + f ( u ) = 0 , 0 < x < T r , t c I R

together with our boundary and periodlcity conditions. This Is not quite a classical solution of

(1.1) since we only have v C C1. However assuming f has more derivatives , we shall  show

greater regulari ty obtains for u. This will complete the proof of Theorem 1. 6 . We are indebted

to L. Nirenberg for some of the ideas used in the proof of the following result .

Theorem 4.1:  If f satisfies (f
1

) - ( f
3

) and u = v+w is a nontrivial weak solution of (1 .1) wi th

V c C fl N , w c C1 fl N1, then v C C1 (1 N and w c C 2 fl N1.

Proo f: First we show v t C1. Once that has been established , it follows from Lemma 2 .13 that

W C C 2 . Two cases are considered :

Case l~ Suppose there Is an [0 , 211] such that u(x , s- x) a , a constant , for all x ~ [0 , 
~~~
].

Then a = 0 via our boundary conditions . Writing v(x , t) = p(x +t) - p(-x +t )  with [p] = 0 and

setting t = s-x , for s = we have

(4 . 2) p( s - Zx) = p(~~) + w(x , s - x), X c  [0 , 11]

The right hand side of (4 . 2) ls continuously differentiable with respect to x . Therefore so is the

left hand side . Hence p and v are continuously d i f fe ren t i ab le .  Moreover I I P ’l l c(S l ) ~
f l i w l i C so

(4 . 3) li v Il 1 ~ lI w li
C &

Case 2: Suppose there is no [0 , 211] such that  u(x , s-x) = 0 for all X t  [0 ,11]. Then (f
2

)

Implies there is a ‘~ > 0 such that

(4 . 4) f11f (u(x , s-x))dx > •y

for all s c [0 , 211]. Since u( 13) -. u In C as 13 -. 0 along a subsequence , for all  small  such (3

we have :

( 4 .5 )  f u X
~

5
~~~~~~ 

>

for all  s [0 , 211]. Di f fe ren t ia t ing  (2 . 46) wIth respect to s shows

-26-
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(4.6)  21113 p”( s) = f11(f (u( x,s-x)) [p ’(s) - p’(s-2x) + w(x ,s-x)) -

- p ’( s) + ~~ w(x ,s+x)) }dx

where we have not explicitly noted the dependence of p and u on 13. This equatiorr~an be

rewritten as

(4. 7) -211 13 p”( s) + p ’( s) 
f

11
( f  (u(x , s-x) )  + f (u(x,s+x)))dx =

= f11[f (u (x , s-x ) ) (p ’(s -Zx)  - w(x , s-x))  + f (u(x , s+x)) (p ’(s+2x) + w(x . s+x) ]dx .

Observe that

~~~ 

~~~~
- f(u(x ,s-x))  = f

~
(u(x ,s~

x))( 2 p’(s-Zx )  + w(x , s-x))

(4 . 8) < d aa [~ ~
— f ( u ( x , s-f x)) = f

~
(u( x ,s4-x)) ( 2 p ’( s +2x) + ~~~~~ w(x ,s+ x))

Hence on integrating (4. 8),  using (f 1), and the boundary conditions for u , we find :

I f Vu(x ,5
~

x)) p’(5
~~

2x)
~~ ~f f 1 1f (u(x , s~ x)) f-

(4 .9) (
[~ ~~~~~~~~~~~~~~ 

p’(s+2x)dx = -  ~ 
f11

f (u(x , s+x)) w(x , s+x)dx .

Substitution of (4 .9)  into (4 . 7) yields

(4 .10) -211 (3 p tm ( s) + p ’( s) j~
1T

(
~~~

u(x , s_ x ) )  + f
~

(u(x , s+x))dx =

= 
~~

11
(f

~
(
~

1(x , 5_ x ) [  ..f 
~~~~

- w(x , s-x)  - ~~~
— w(x , s-x) ]

+ f
~

(u(x , s+x)) [_ f -
~~ 

w(x , s+x) + ~~- w (x , s+x) J }dx

Hence cl(s) = p ’(s) satisfies an equation of the form

(4 .11) -211 13 ç”( s) + a(s)  ci (s)  = h(s )

where h ~ C(S1) and is bounded independently of ( 3 >  0. Moreover a(s)  > y/2 . Since r ’

must vanish somewhere in [0 , 211] and p’~~ 0 , ~ has a positive maximum and a negat iv a  mini-

mum . From (4 . 11) we then conclude

(4 . 12) 
~~~ C(S~) ~ ~ lI h il C(S l )

and

(4. 13) (ll
~~

13( l C(S
l
) ~ ~ a i lj w(p)

~~~
l < .

~~ a~ M 6 . 

-
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V 
It follows that p(s) = u r n  p(~3)( s)  is In H1(S 1). Multiplying (4 . 10) by 4~ ~ L 2(S1), Inte-

grating over [0 , 211] and letting (3 -.. 0 , we see that (4 . 10) is valid in an a .e . sense wi th  13 = 0.

Then (4 . 4) and v ~ C , w C’ imp ly p’ C(S ’) so v c C1. The proof is complete .

Corollary 4 . 14: If f is k times continuously different iable , k > 1 , then v C C  and wt  C~~ ’.

Proof: The proof is by induction on k . It has already been established for k = 1. Assume it

V for k = J -i .  To get the result for k = J , note first that  v ~ & Implies that w C14
~ , again via V

Lemma 2 .13. To get V C C1, we consider the two cases of Theorem 4 . 1. In Case 1, (4 . 2) can

be differentiated j times since w & and this give s the result . In Case 2 , consider (4 .10)

wIth 3 =  0. DIviding by

+ f (u(x , s+x))dx

the resulting right hand side is j -i  times continuously differentiable via (4 . 4) and the induction

hypothesis. Hence p’ c C
J V

~l and V c C1

Remark 4 . 15: It Is worth observing at this point that  the arguments  of §2 -4 show that if

u = v+w is a weak solution of (1.1) with

(4.16) I I f u I l  
~L

where f satisfies (f 1), ( f
2

) and

(f ’3) I f ( z ) I  -. as I z i  —

then V C  C’ and wc C
2
. Moreover If f t  ~~ , k > l , then v c  and w~ Ck+l

-28-
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§5. Variou s extensions.

This section contains extensions of Theorem 1. 6 In four directions. First we prove the re-

sult stated In the Introduction concerning the existence of nontrivial periodic solutions of (0 . 1)

for any period which is a rational multiple of 11~ The next two generalizations involve w e a k e n i n g

the hypotheses (f 1)-( f 3). If (f
1)-(f2

) are replaced by (fj)_ (f~)~ we can still get a ‘weak” solu-

Uon of (1.1) (Theorem 5.6) wh ile if (f
3
)(i) is weakened by adding a linear term with the proper

sign to f , an analogue of Theorem 1.6 (Theorem 5.13) still obtains. Lastly we study the forced

vibration question for (0.1), I.e. we permit f to depend on x and t in addition to u . Since

the above results mainly involve minor modifications of the arguments  of §1-4 , we will  genera 11- ,

be sketchy with details here.

V Theorem 5.1: Let f satisfy (f
1)-(f3

). Then for any J , m ~ IN, the problem

~~ - u + f(u) = 0, 0 <x < ir , t ~ IR,
(5.2) (

~ u(0 ,t) = 0 = u(11,t)

possesses a nontrivial solution u = v + w ~ (& fl N) ~B(C 2 fl N 1) which has the period 1TT ~fl t .

Proof: It suffices to prove the result for J = 1. Only small modifications need b~ made  in § 1-4 .

The most Important changes are the fo11ow~ng :  We replace T by Tm = {(x , t) ~ [0 , 11]x[0 , ] }

the spaces L2
, Ck , etc Introduced in §1 now are taken relative to T m ; N Is replaced by

{~~x+t ) - p( -x+t ) I  p Is periodic and f m
P

2(S )dS <
~~~}

and E
n 

by span {sin J x  sin 2m k t , sin i x  cos 2m k t b  j , k < n } .  It is s t ra igh t fo rw ard  to

veri fy that Lemma 2 . 13 Is valid for this new class of functions with no change in the repres ent~-

tlon (2 . 15) but only in the underlying class of functIons . The results  of §1-4 now go th rough

with minor changes and Theorem 5.1 obtaIns

Corollary 5. 5: Under the hypotheses of Theorem 5.1 , (5 . 2)  possesses i n f i n i t e l y  many  d i s t i nc t

nontrivial solutions which are periodic In t

Proof: By Theorem 5 . 1, for each n c N , ( 5 . 2 )  possesses a nontrivIal solution having period

!. in t . Hence infinitely many of these solutions must be distinct .
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Next we study the effec t of weaken ing (f
1)-(12

) to ( fp_ ( fp (Se e  Remarks 1. 37 and 2. 57) on

Theorem 1. 6 . Here as was pointed out to us by H. Brezis the monotonicity of f can be exploited

to get a weak solution of (1 . 1) using a standard monotonlcity argument .

Theorem ~. 6: If f sat isf ies ( fp , ( fp , ( f 3
) , then ( 3 . 3 8 )  possesses a nontrivial  solution u = v4w

with v C L~ fl N and w c C fl N1.

Proof: Remark 2 . 57 gives us a nontrivial solution uU3, K) of (2 . 58) wIth vU3,K) c C 2 and

w((3, K) C’. The argument of Corollary 3. 5 goes unchanged for this case to give a bound on

II w( (3, K I I C independent of (3 and K. Since ~.~ (z)  * ~ as z — ~, we still obtain (3 . 8) .  Hence

we can drop the dependence of u on K as earlier . The bound (3 . 26) remains valid here . Un-

fortunately the proof of Lemma 3. 29 no longer holds . Nevertheless one can still get the con-

vergence of a subsequence of the u( (3) as ( 3 —  0 . Indeed since the functions uU3 ) are bounded

in L2 fl L°°, D u ( ( 3 )  are bounded In L2
, w( (3) are bounded in C1

, and (3v~~—. 0 weakly  in L 2

V 
as (3-. 0, it follows that  we have

L2 
L

2 
Cu( 13) — u , D u ( (3) — g, w((3) -. w

along a subsequence of (3-. 0. Note that if

L2 L2
h ~— h  and O h  — c ,n

then for all ~ £ C0 ,

f ~ ~, dxdt = u r n  f ci 0 h dxdt = lim f h D c dxd t = f h 0 q’ d xdt .
T n~~~ - T n-. QO- T T

2
Thus Dh= (~ weakl y and O h  ~~-. Oh . Hence 0 has a closed graph as d mapping of L 

k 
-.

2
L
2 so O u~~)~ - flu.weak

For any p c  L , by

(5.7) (f(u(~3)) - f(p))(u( (3) - p) > 0

Integrating over T and using (2. 58) yields

(5.8) f  ( ( 3 v~~(p)  - Du(13) - f (p) ) (u ( ( 3 )  - p)dxdt > 0
T

Letting (3-. 0 along our subsequence in (5 . 8) and noting tha t

~~U3) u( ( 3) dxdt - (311 v1 ( 13) 11
2
2 ~ 0
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we get V

(5 .9) f (_ D u  - l(p)) ( u - p ) d x d t > 0
T

00 00
for all p C  L . Choose p = u +  X x ,  X C  C , X > 0 . Hence (5 .9)  becomes

(5 .10) ( -Du  - f(u +X x ) ) ( - X ~ )d xdt > 0 -

Dividing by X , letting X -. 0, and noting that  x Is arbitra ry we find

O u + f(u)=0 a.e.

from which (3. 38) and Theorem 5 . 6 follow .

Remark 5.11: Lemma 2 .13 implies the first derivative of w is In L
00

For our next generalization of Theorem 1. 6 , we consider

f D u +  a u + f ( u ) = 0 , 0 < x < 1 r , t~ IR
(5 .12)

~ 
u(0 ,t) = 0 = u(lr , t) , u(x ,t + 211) = u(x , t)

Theorem 5 . 13: If a > 0 and f satisfies (f
1) -( f 3), then (5 . 12) possesses a nontrivial solution

u = v+w with v £ & fl IN, w€ C2 fl N1. -

Proof: There are several approaches one could take to this problem such as beginning anew v . i th

a variant of (l.8) in which p 
~~ 

is replaced by a term more suitable to (5.12). Howeve r we

will remain in the framework set up in §1-4 in order to take advantage of the theory we have

developed. The first s igni f icant  modification to our earlier a rguments  arises in the proof of

Lemma 1.13 where we must  replace N , N * by other spaces . Let

N1 spa n {sln ix sin kt, sin jx cos ktlk 2 = a + J
2 }

N~ = span (sin ix sin kt , sin j x cos k t l k 2 
> a + , and

- . 2 2N 2 = span (sin Jx sin kt , sin Jx cos k t l k  < a  + j )
Observe that  N 1 = (0 )  Is possible . Set IR’~~c E fl N 1~BN 2 t I3 sp an ( s inx  sin ~ t )  where ~

is the smallest  element of IN sa t is fying ~2 
> a+ 1. Then the conclusion of Lemma 1. 11 ob t a in s

with this  choice of m~~
1 . Moreover the argument  of Lemma 1.14 goes through e s sen t i a l l y  as

earlier wi th  (2 2 _ I )  replaced by ~2 
- (a+l).  The presence of the a term does not effect  any of

the estimates and a rguments  of §2-4 required for the existence of a solution of (5 . 12) in an

unfavorable  fashion . (See also Remark 1 .15 In this regard).  Thus we get existence of a solut ion

-31 —

-V — - ~~~ - - - - ~~- - -V --- -- --- S ~~- _ V.~~~~~~~~~~~~~~~~~~~



I ’

u((3,K) of (1.8 )(with au + and u of (5.12). The proofs of Lemmas 2.47 and 3.40

are not valid here since they employed (f 3)( l)  which Is not satisfied by a z + f(z ) .  Lemma 2 . 47

can be salvaged as follows : The analogue of (2.49) for our equation (with V C N, W
n 

C N 1

as usual) is

(5 .14) ~,(3Il v~ II~ ~ 13ll ”nt U~2 
+ a iI vn iI Z

Z ~ 
‘
~2 K n ~

11 C~~”n “C
This observation gives (2 . 51), A being defined as earlier , with different constants:

(5 .15) 1311 V I I C ~ 
‘?3 c An + 

~~ 
A

Now we distinguish between two cases depending on whether N1 Is trivial or not .

Case l: dIm N
1 = 0 .

Then (2 . 15) Implies (0  + a) ’ Is continuous from L2 1) N1 — C fl N1 so

(5 .16) II W II C < ~S Ii ( 3 v
tt + a v + P f K (u ) II z

and b y ( 2 . 6 ) ,  (5 .14), and (2 . 50),

(5.17 ) II W II C ~ ~Y 6~~ An + A A3 ) V

CombinIng (5 . 15) and (5 . 17) as in Lemma 2 .47 then shows A is bounded away from 0

Case 2: dIm N 1 > 0 .

We argue Indirectly for this case using a comparison argument . To denote the dependence

of N1, N~ on a , we write N1
(a), etc. Observe that for a > a , N 1(a) ~~~N ( a) C N (a) .  We

have dim N ,( a) > 0 . For a slightly larger than a , dim N 1
(a) 0 and N 1

(a)  ~~N 2
( a )  = N 2(a ) .

We fix such an a . Let

(5.18) l k (u)  = f [f(u ~
_ U

2 
- ( 3  v~

_ X u 2 ) - F
K(u) ]d xdt

Then Ia(U) > 1 (u )  for all u ~ E and from Lemma 1. 13 we see r (a)  = r (a) and c 
n
(a) >

c (a) ~ 0 . For c , A as in (2 .  50), define

( 5.19) jx ( u) = f [f(u ~ - u2 -p  v~ - Xu 2 - e u 2 ) -
~~~ 

A u 4]dxdt .

Then as in Lemma 3. 40 , for e suff ic ient ly  small compared to a-a , we have a critical value

b (o’) of J (u) with c (a) > b (a) > 0 . 
-

Suppose biu~
(a)Ii

~ 
— 0 as n — ~~‘ . Then by (1. 28), C (aJ and a (on ion bn(a) _ 0. This

Implies lI~~(°)Il 
~ 

— 0 by (3 . 45) .  But the a rgument  of Case 1 (with i possibly s t i l l  smaller)
L
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shows II ’~n~~~II~ 
is bounded away from 0 . Since ~ (a) converges in C , this Is contrary

to (3. 45).

Thus we have shown u (p , K) Is nontrivial . A more complicated argument based on the

above and the proof of Lemma 3 .40 then shows the solution u of (5.12) Is nontrivial .  We will

not carry out the details .

For our final results , we consider

( 0 u + f(x ,t ,u) = 0 , 0 < x  < i r , t C m
(5 .2 0) (

u(0 , t) = 0 u( 1r ,t) ,  u(x ,t + 211) = u(x ,t) V

first under the hypotheses:

f C  C1( [0 , n] X R 2
,IR), f(x , t , 0) 0 , and f Is 211 periodIc in t

~~~ 
f(x ,t ,z) Is strictly monotonically increasing In z and f ( x , t , z) > 0  for z near 0 , z � 0

(1
3

) ( 1) f(x ,t,z) = o ( I z I )  at z = 0

(ii) There is a ~ > 0  so that F(x , t , z) = JZ f(x , t , s)ds -C 0 z f(x , t , z) for l z l  ~
V 1 0

where O C  [0 ,~~) .

Here we can show

Theorem 5.21:  If f sat isf ies ( F 1 ) - (f 3 ) , ( 5 . 20) possesses a nontrivial solution u = v+w

(C 1 fl N) ~3(C 2 fl N1).

Proof: A truncation of f analogous to (1 .7)  Is required . Let

r f(x , t , z) if ~~ < K  ,

(5. 22) f
K

(x , t , z) f ( x , t , K) # f (x , t , K ) ( z - K )  + p ( K ) ( z - K ) 3
, z > K

L f(~~, t , - K ~ + f (x , t , - K ) ( z + K )  + ~~K ) ( z + K ) 3, z < - K .

Note tha t is merely cont inuou s  in (x , I) for ~z I > K. It is easy to verify that the results of

§1-2 are valid f r th l s ca se  with  only minor  modi f i ca t ions  un t i l  Lemma 2 . 3 2  where it was neces-

sary to d i f f e r en t i a t e  with respect to t . This we cannot do un l e s s  Iu ((3
~
K)b! C 

<K. How-

ever Remark 2. 57 gives us a weak solution of the modif ied  equa t ion  for (5 . 20) wi th  v c C2 and

W C C1. Since (3 .  2) ,  (3 . 6) ,  and (3 .  14) are s t i l l  valid , we get Ilu( (3, K) II C ~ A 5 + M 5 indep en -

dently of (3 and K. Hence for K > A~ + M 5 ,  and for n appropriately large , since

-3 3-
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u ( ~~,K)-’ u( (3 , K) in C , we can assume II u ( 13, K) II c < K. By our above observation , Lemma

2. 32 Is now applicable for n large.  Thus the proof proceeds essential ly as earlier wi th  the

second part of hypo t riesis 
~~~ 

now required for Case 2 of the proof of Theorem 4 .1.

Remark 5.23: The ooservatlons made in Remark 4. 15 apply equally well to (5 .  20).

As our concluding resul t  we have

Theorem 5. 24: If -f satisfies (f
1 ) -( f 3

)~ (5 . 20) possesses a nontrivial  solution

U V+W t (C
1 fl N) -~ (C 2 fl N1).

Proof: The proof of Theorem 5 .21 works for this case with t i le following changes :  In the  d e f in i -

tion of 1, replace (3 by -(3. Then use -I In the rn in imax argument of Lemma 1. 13 and also

reserve the roles of N+ and N .

Remark 5. 25: Theorem 5. 24 applies equally well when f Is inde penden t of t . However for V

this case our methods do not guarantee that the solution u (x , t) depends explicit ly on t i . e.

we may only obtain a solution of the ordinary differential  equation

~.- 2 V .

f (x ,u ) = 0 , 0 < x < I T

(5. 26) dx
u(0) = 0 = u( rr ) .

I
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Appendix

The purpose of this Appendix Is to prove Theorem 1.10 . To do so , we require two prelim-

inaries; a standard result  from the calculus of variations and a topological intersect ion lemma .

We are Indebted to E. Fadell for the proof of the latter.

Lemma A. 1: Let J C CL (IR m
, IR) , A = (x e IRm ,J (X )  < s) ,  and K5 = {x c 1Rm

i J ( X )  = s and

J ’(x) = 0).  Let c > 0  and c~ IR. Then there Is an e c (0 ,c ) and an 
~~€ C([0 , l j  X ffi~ mm )

such that

,~(t ,x) = x If J(x) / ( c  - £ , C +C

2° l(l ,A +
) C A c if Xc =

For a proof of this lemma see- e~ g:- [7-] or [12]. The notation of Theorem 1 . 10 wi l l be -

employed in the next result .

Lemma A. 2: Let bR = ~ B~ and b = ( X C  BR lx k+l ~~0}. If g c  C(b~ , 1Rm ) , m > k , p - R ,

and there is a homotopy G t  c([o ,1] x a b , IRm\ (O B~~fl (fl~k ) JV)) such that  G(0 , x) = x and

G(l ,x) = g,  then g(b~) fl a B  fl (m k )~ � p.

Proof: Intersection theory in mm [13 , p. 197] provides a s imple  proof. To n o r m a l i z e  the  prob-

lem somewhat , let R = 1, p < 1 . Set D
m _ k  

= 

~ 
fl (fl~k )1 aDm h  

= aB 1) (m k ) I b
1
~~ bj’ , and

V a b = (x £ b IX k+l = 0 or l x i  = 1) . The intersection pair ing

Hm+k (D r n k
, aD m k ) X H k(ab + ) — Z

yIelds +1 as Intersection number for appropriately chosen generators in the homology groups

above . Furthermore natura l ity yields the diagram

H +k
(Dm

~
k
, 00

m~~~) ~ H k
(ab ) -. Z

i d X j ,~, /
H +k

(D m k
, aDm k ) X H~ (1R~ \

where j :  3b~ c mm \ aD m k  
is Inclusion . If g C(b +, m

m \ ao k ) and G as in the state-

ment of the Lemma , then would be the t r ivia l  homomorphism and thus  would force the inter-

section number to be 0 which is a contradiction .
-35 -
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- Theorem 1. 10: Let J Ct (IRm
,IR) and I : IR m _ IR where J(x) <1 (x)  for all X C  ~~m and

J(x) < 0  for all X C IRk 
. If there are constants R > r > 0 such that  J > 0 In (B r\ ( 0) )  11 ( fl~~)1

while I < 0  on ~~
m \ B R , then J has a critical point in {x c ~~

m 1(x) > 0 )  and a corresponding

critical value characterized by

(1.11) c = inf max J ( h (x ) )  > 0
k+1 n - -

h € ~~~ X C I R  i i B ~

where I’ = {h ~ C (m k+l f l BR,I R )  h(x)  = ~ if 1(x) < 0 )

Proof: Let h £ r. Then h(x) = x if 1(x) < 0  . Since I < 0  on ~~
k U 0 B R, h(y)  = y on

a b~ . Hence h = g trIvially sati sfies the homotopy hypothesis in Lemma A. 2 for all p < R.

- V Therefore- -for-all- .such p ,  - - V V~~~~~~~~~

(A. 3) h(b
~ R

) fl aB s, 1) (IR
k
)
1 

�

Choosing any p < r and letting

a = mm J(z)
z c OB fl(IR k )lp

then a is positive by hypothesis and by (A. 3) with p = r

(A . 4) ma~ 1 J(h(x)) > a > 0
x~ JR + 

~
Thus by (A. 4) and the definition of c , c > a > 0 . It remains to show that  c is a critical value

of J . We argue indirectly.  Suppose c is not a critical value of J. Then we can invoke

Lemma A. l with ~~ < ~~~~~. Observe tha t i f h € r , then ,~(l ,h) C C(IR k4l  fl BR , f f i ) .  Moreover

if 1(x) < 0 , then J(x) < 0  and h(x) = x. The refore by 10 of Lemma A. 1 and our choice of t~,

,1(1, h(x) )  = ri(l ,x) = x . Consequently 1(l , h) ~ r

Finally choose h C r such that

(A. 5) max 
1 J( h( x) )  < c +e -

X C J R I1 BR
Then by 2 of Lemma A . 1,

(A. 6) max J(r~(l , h ( x ) ) < c  - C  ,
x mk~+t ~ B R

contrary to the defini t ion of c. Thus the theorem is proved .
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Remark A. 7: If c = max J , a refined version of Theorem 1. 10 shows K contains In f in i t e ly

many critical points. On~ can also give an inf ini te  dimensional version of the theorem . Since

these results are extraneous to the main topic of this paper , we will pursue them elsewhere .

‘I
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